Towards autonomic multimodal interactions

P.A Avouac - L. Nigay - P. Lalanda

Université de Grenoble
Outline

- Context
- Overall architecture
- Models
- Example
Outline

- Context
- Overall architecture
- Models
- Example
Context

- Vision: pervasive computing
 - Communicating devices
 - Evolving environment
- Now
 - Heterogeneity: communication clusters
 - Dynamism: rarely handled
Context: input multimodality

- Interacting with computer systems through several devices
- Vision
 - The user freely chooses its input devices
 - Interaction is usable
- Now
 - Heterogeneity: devices are chosen among compatible devices
 - Scalability: interaction is designed for an application with few devices
Main problem

Interactions are not adaptable
Proposition

• Autonomic computing can help:
 - Observing environment, analysing, adapting
 - Observing usage, analysing, proposing
 - Taking in account a high level policy given by an user

• Model driven approach can help:
 - Clearly defining what information is needed
 - Abstraction of context
Outline

- Context
- Overall architecture
- Models
- Example
Overall Architecture
Overall Architecture
Overall Architecture
Overall Architecture
Overall Architecture
Overall Architecture

Discovery Manager

Autonomic Manager
Overall Architecture
Overall Architecture

- Discovery Manager
- Autonomic Manager
- Interaction Policy
- Models
Solved problems

• Heterogeneity: proxy pattern, models

• Dynamism: discovery manager

• Scalability: models
Outline

- Context
- Overall architecture
- Models
- Example
Information

- Autonomic manager relies on external information
- Who provides information?
 - At design time
 - Interaction designers
 - Developpers
 - At run time
 - User
 - Discovery manager
Proxy models

- Discovery information
- Ports (tasks and sensors)
 - Code reference
 - Data direction
 - Data type
 - Identifier
Partial interaction models

• Objective: enabling the generation of usable interaction

• Mean: letting interaction designers to express their knowledge

 – By assembling components:
 • Declaration
 • Configuration
 • Port connections

 – For an interaction class
Partial interaction models

- Interaction class
- Components
 - Configuration
 - Ports
 - Connections
 - Meanings
Outline

- Context
- Overall architecture
- Models
- Example
Example: proxy models

- Application
 - VLC
 - Play/pause, SetVolume...
- Devices
 - Wiimote
 - Abutton, Bbutton...
 - BD Remote Control
 - ZeroButton, PauseButton...
VLC partial interaction model

- "MediaPlayer" interaction class
 - Pause, Mute...

VLC Proxy
- play/pause
- setVolume
VLC partial interaction model

- "MediaPlayer" interaction class
 - Pause, Mute...
VLC partial interaction model

- "MediaPlayer" interaction class
 - Pause, Mute...

![Diagram of VLC partial interaction model]

- VLC Proxy
 - play/pause
 - setVolume

- Identity
- Constant Generator
 - constant
 - trigger
 - constant=0

[Diagram showing interactions between VLC Proxy, Identity, and Constant Generator]
VLC partial interaction model

- "MediaPlayer" interaction class
 - Pause, Mute...

VLC Proxy

play/pause

setVolume

Identity

out

in

Constant Generator

constant

trigger

constant=0

meaning=Pause

meaning=Mute

partial interaction model
Remote control partial interaction model

- "MediaPlayer" interaction class
Remote control partial interaction model

- "MediaPlayer" interaction class

partial interaction model
Remote control partial interaction model

- "MediaPlayer" interaction class

meaning=Pause

meaning=Mute

partial interaction model
Generated chain

VLC Proxy
- play/pause
- setVolume

Constant Generator
- out
- trigger

Remote Control Proxy
- pauseBtn
- zeroBtn

Wiimote Proxy
- ABtn
- BBtn

generated chain
Conclusion

- Pervasive environments => adaptable multimodal interaction

- Autonomic computing and model driven approach enable adaptation

- Our architecture gives a base for future work:
 - Collecting data in mediation chain
 - Analysing
 - Proposing adaptation to users
Questions